26 research outputs found

    The Vela Supercluster - does it provide the missing link to explain the local flow fields?

    Get PDF
    Includes bibliographical referencesAs part of a larger effort to uncover the structures hidden behind the Milky Way, we analyse 5,190 spectroscopic redshifts for galaxies in the Hydra/Antlia and Vela regions (245°≤ l ≤ 295°, /b/ ≤ 10°). These galaxies are based on deep optical galaxy source catalogues in the Zone of Avoidance in the Hydra/Antlia region (Kraan-Korteweg 2000a), the Vela region (von Maltitz 2012), and the near infrared 2MASS Extended Source Catalogue(XSC) (Jarrett et al. 2000a, Skrutskie et al. 2006). The observed redshifts were mainly obtained from the 2dF+ AAOmega spectrograph at the Anglo-Australian Telescope (80% of the redshifts); the remaining data are from other telescopes as well as from the literature. This analysis is suggestive of the existence of a massive supercluster in this region, hereafter called the Vela Supercluster (VSC). The prospective VSC is at a mean redshift of cz ~18, 000km s⁻¹, and extends approximately about 87 x 87Mpc on-sky. We use a nearest neighbour algorithm to identify the galaxy clusters and groups within the potential VSC, determine their velocity dispersions and the corresponding virial masses. Although the VSC is sparsely sampled, we find 13 galaxy clusters and 22 galaxy groups contained within it. The richness and the masses of these galaxy clusters/groups are comparable with the galaxy clusters/groups found within the Shapley Supercluster by Proust et al. (2006). Taking account of the sparse sampling, the VSC seems comparable to the Shapley Supercluster (SSC). Given the fact that the SSC contributes about 9% of the Local Group motion (Muñoz & Loeb 2008), if not more (see Kocevski & Ebeling 2006). The proximity of a further supercluster (VSC) in its vicinity, might have serious implications on the bulk flows studies. Consequently, the existence of this supercluster is likely key in resolving the long-enduring bulk flow controversies and the misalignment of flows with the dipole determined via the Cosmic Microwave Background (CMB) observations

    An HI study of the collisional ring galaxy NGC 922

    Full text link
    We present new atomic hydrogen (HI) observations of the collisional ring galaxy NGC 922 obtained using the Australia Telescope Compact Array. Our observations reveal for the first time the vast extent of the HI disc of this galaxy. The HI morphology and kinematics of NGC 922 show that this galaxy is not the product of a simple drop-through interaction, but has a more complex interaction history. The integrated HI flux density of NGC 922 from our observations is 24.7 Jy km s1^{-1}, which is within the error of the flux value obtained using the 6464-m Parkes radio telescope. This flux density translates to a total HI mass of 1.110101.1*10^{10} M_{\circ} and corresponds to an HI to total mass fraction (MHI_{HI}/Mtot_{tot}) of approximately 0.110.11. The gaseous structures of NGC 922 are more extended to the north and include an HI tail that has a projected physical length of 88 kpc. Gas warps are also evident in the velocity field of NGC 922 and are more prominent on the approaching and the western side of the disc. In comparison with a large sample of star-forming galaxies in the local Universe, NGC 922 possesses a high gas fraction relative to galaxies with a similar stellar mass of ~1010.410^{10.4} M_{\circ}, and exhibits a high specific star formation rate.Comment: 11 pages, 8 figures, published in MNRA

    Spatiotemporal mapping of malaria incidence in Sudan using routine surveillance data

    Get PDF
    Malaria is a serious threat to global health, with over [Formula: see text] of the cases reported in 2020 by the World Health Organization in African countries, including Sudan. Sudan is a low-income country with a limited healthcare system and a substantial burden of malaria. The epidemiology of malaria in Sudan is rapidly changing due to factors including the rapidly developing resistance to drugs and insecticides among the parasites and vectors, respectively; the growing population living in humanitarian settings due to political instability; and the recent emergence of Anopheles stephensi in the country. These factors contribute to changes in the distribution of the parasites species as well as malaria vectors in Sudan, and the shifting patterns of malaria epidemiology underscore the need for investment in improved situational awareness, early preparedness, and a national prevention and control strategy that is updated, evidence based, and proactive. A key component of this strategy is accurate, high-resolution endemicity maps of species-specific malaria. Here, we present a spatiotemporal Bayesian model, developed in collaboration with the Sudanese Ministry of Health, that predicts a fine-scale (1 km [Formula: see text] 1 km) clinical incidence and seasonality profiles for Plasmodium falciparum and Plasmodium vivax across the country. We use monthly malaria case counts for both species collected via routine surveillance between January 2017 and December 2019, as well as a suite of high-resolution environmental covariates to inform our predictions. These epidemiological maps provide a useful resource for strategic planning and cost-effective implementation of malaria interventions, thus informing policymakers in Sudan to achieve success in malaria control and elimination

    The HI in Ring Galaxies Survey (HI-RINGS) -- Effects of the bar on the HI gas in ring galaxies

    Full text link
    We present a new high-resolution neutral atomic hydrogen (HI) survey of ring galaxies using the Australia Telescope Compact Array (ATCA). We target a sample of 24 ring galaxies from the Buta (1995) Southern Ring Galaxy Survey Catalogue in order to study the origin of resonance-, collisional- and interaction-driven ring galaxies. In this work, we present an overview of the sample and study their global and resolved HI properties. In addition, we also probe their star formation properties by measuring their star formation rates (SFR) and their resolved SFR surface density profiles. We find that a majority of the barred galaxies in our sample are HI deficient, alluding to the effects of the bar in driving their HI deficiency. Furthermore, for the secularly evolving barred ring galaxies in our sample, we apply Lindblad's resonance theory to predict the location of the resonance rings and find very good agreement between predictions and observations. We identify rings of HI gas and/or star formation co-located at one or the other major resonances. Lastly, we measure the bar pattern speed (Ωbar\Omega_{\textrm{bar}}) for a sub-sample of our galaxies and find that the values range from 10 -- 90 km s1^{-1} kpc1^{-1}, in good agreement with previous studies.Comment: Accepted for publication in PAS

    Discovery of a supercluster in the Zone of Avoidance in Vela

    Get PDF
    We report the discovery of a potentially major supercluster that extends across the Galactic plane in the constellation of Vela, at a mean recessional velocity of ~18 000 km s-1. Recent multiobject spectroscopic observations of this Vela supercluster (VSCL), using AAOmega+2dF and the Southern African Large Telescope, confirm an extended galaxy overdensity in the Zone of Avoidance (ZOA) located where residual bulk flows predict a considerable mass excess. We present a preliminary analysis of ~4500 new spectroscopic galaxy redshifts obtained in the ZOA centred on the Vela region (l = 272. ° 5 ± 20°, b = 0° ± 10°). The presently sparsely sampled data set traces an overdensity that covers 25° in Galactic longitude on either side of the Galactic plane, suggesting an extent of 25 × 20 deg2, corresponding to ~ 115×90 h70 Mpc at the supercluster redshift. In redshift space, the overdensity appears to consist of two merging wall-like structures, interspersed with clusters and groups. Both the velocity histogram and the morphology of the multibranching wall structure are consistent with a supercluster classification. Ks o galaxy counts show an enhancement of ~1.2 over the survey area for galaxies brighter than MK * at the VSCL distance, and a galaxy overdensity of δ = 0.50-0.77 within a photometric redshift shell around the VSCL, when compared with various Two Micron All-Sky Survey samples. Taking account of selection effects, the VSCL is estimated to contribute vLG ≳ 50 km s-1 to the motion of the Local GroupRCK-K, THJ, and MEC acknowledge research support from the NRF. MB is supported through grants #614.001.451 from the NWO, FP7 #279396 from the ERC, and #UMO-2012/07/D/ST9/02785 from the NC

    WALLABY Early Science - I. The NGC 7162 Galaxy Group

    Full text link
    We present Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) early science results from the Australian Square Kilometre Array Pathfinder (ASKAP) observations of the NGC 7162 galaxy group. We use archival HIPASS and Australia Telescope Compact Array (ATCA) observations of this group to validate the new ASKAP data and the data reduction pipeline ASKAPsoft. We detect six galaxies in the neutral hydrogen (HI) 21-cm line, expanding the NGC 7162 group membership from four to seven galaxies. Two of the new detections are also the first HI detections of the dwarf galaxies, AM 2159-434 and GALEXASC J220338.65-431128.7, for which we have measured velocities of cz=2558cz=2558 and cz=2727cz=2727 km s1^{-1}, respectively. We confirm that there is extended HI emission around NGC 7162 possibly due to past interactions in the group as indicated by the 4040^{\circ} offset between the kinematic and morphological major axes for NGC 7162A, and its HI richness. Taking advantage of the increased resolution (factor of 1.5\sim1.5) of the ASKAP data over archival ATCA observations, we fit a tilted ring model and use envelope tracing to determine the galaxies' rotation curves. Using these we estimate the dynamical masses and find, as expected, high dark matter fractions of fDM0.810.95f_{\mathrm{DM}}\sim0.81-0.95 for all group members. The ASKAP data are publicly available.Comment: 20 pages, 11 figures, accepted for publication in MNRA

    A giant galaxy in the young Universe with a massive ring

    Full text link
    In the local (redshift z~0) Universe, collisional ring galaxies make up only ~0.01% of galaxies and are formed by head-on galactic collisions that trigger radially propagating density waves. These striking systems provide key snapshots for dissecting galactic disks and are studied extensively in the local Universe. However, not much is known about distant (z>0.1) collisional rings. Here we present a detailed study of a ring galaxy at a look-back time of 10.8 Gyr (z=2.19). Compared with our Milky Way, this galaxy has a similar stellar mass, but has a stellar half-light radius that is 1.5-2.2 times larger and is forming stars 50 times faster. The large, diffuse stellar light outside the star-forming ring, combined with a radial velocity on the ring and an intruder galaxy nearby, provides evidence for this galaxy hosting a collisional ring. If the ring is secularly evolved, the implied large bar in a giant disk would be inconsistent with the current understanding of the earliest formation of barred spirals. Contrary to previous predictions, this work suggests that massive collisional rings were as rare 11 Gyr ago as they are today. Our discovery offers a unique pathway for studying density waves in young galaxies, as well as constraining the cosmic evolution of spiral disks and galaxy groups.Comment: Author's version for the main article (10 pages). The Supplementary Information (22 pages) and a combined pdf are provided here http://astronomy.swin.edu.au/~tyuan/paper Published version available online http://dx.doi.org/10.1038/s41550-020-1102-

    WALLABY Pilot Survey: Hydra Cluster Galaxies UV and HI morphometrics

    Full text link
    Galaxy morphology in atomic hydrogen (HI) and in the ultra-violet (UV) are closely linked. This has motivated their combined use to quantify morphology over the full H i disk for both H i and UV imaging. We apply galaxy morphometrics: Concentration, Asymmetry, Gini, M20 and Multimode-Intensity-Deviation statistics to the first moment-0 maps of the WALLABY survey of galaxies in the Hydra cluster center. Taking advantage of this new HI survey, we apply the same morphometrics over the full HI extent on archival GALEX FUV and NUV data to explore how well HI truncated, extended ultraviolet disk (XUV) and other morphological phenomena can be captured using pipeline WALLABY data products. Extended HI and UV disks can be identified relatively straightforward from their respective concentration. Combined with WALLABY HI, even the shallowest GALEX data is sufficient to identify XUV disks. Our second goal is to isolate galaxies undergoing ram-pressure stripping in the H i morphometric space. We employ four different machine learning techniques, a decision tree, a k-nearest neighbour, a support-vector machine, and a random forest. Up to 80% precision and recall are possible with the Random Forest giving the most robust results.Comment: 17 figures, 12 figures, 7 tables, accepted by MNRA

    WALLABY Pilot Survey: HI gas kinematics of galaxy pairs in cluster environment

    Get PDF
    We examine the H I gas kinematics of galaxy pairs in two clusters and a group using Australian Square Kilometre Array Pathfinder (ASKAP) WALLABY pilot survey observations. We compare the H I properties of galaxy pair candidates in the Hydra I and Norma clusters, and the NGC 4636 group, with those of non-paired control galaxies selected in the same fields. We perform H I profile decomposition of the sample galaxies using a tool, BAYGAUD which allows us to de-blend a line-of-sight velocity profile with an optimal number of Gaussian components. We construct H I super-profiles of the sample galaxies via stacking of their line profiles after aligning the central velocities. We fit a double Gaussian model to the super-profiles and classify them as kinematically narrow and broad components with respect to their velocity dispersions. Additionally, we investigate the gravitational instability of H I gas disks of the sample galaxies using Toomre Q parameters and H I morphological disturbances. We investigate the effect of the cluster environment on the H I properties of galaxy pairs by dividing the cluster environment into three subcluster regions (i.e., outskirts, infalling and central regions). We find that the denser cluster environment (i.e., infalling and central regions) is likely to impact the H I gas properties of galaxies in a way of decreasing the amplitude of the kinematically narrow H I gas (⁠MnarrowHI role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eMHInarrowMnarrowHI/MtotalHI role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eMHItotalMtotalHI⁠), and increasing the Toomre Q values of the infalling and central galaxies. This tendency is likely to be more enhanced for galaxy pairs in the cluster environment

    FAST-ASKAP Synergy: Quantifying Coexistent Tidal and Ram-Pressure Strippings in the NGC 4636 Group

    Full text link
    Combining new HI data from a synergetic survey of ASKAP WALLABY and FAST with the ALFALFA data, we study the effect of ram-pressure and tidal interactions in the NGC 4636 group. We develop two parameters to quantify and disentangle these two effects on gas stripping in HI-bearing galaxies: the strength of external forces at the optical-disk edge, and the outside-in extents of HI-disk stripping. We find that gas stripping is widespread in this group, affecting 80% of HI-detected non-merging galaxies, and that 34% are experiencing both types of stripping. Among the galaxies experiencing both effects, the strengths (and extents) of ram-pressure and tidal stripping are independent of each other. Both strengths are correlated with HI-disk shrinkage. The tidal strength is related to a rather uniform reddening of low-mass galaxies (M<109MM_*<10^9\,\text{M}_\odot) when tidal stripping is the dominating effect. In contrast, ram pressure is not clearly linked to the color-changing patterns of galaxies in the group. Combining these two stripping extents, we estimate the total stripping extent, and put forward an empirical model that can describe the decrease of HI richness as galaxies fall toward the group center. The stripping timescale we derived decreases with distance to the center, from 1Gyr\mathord{\sim}1\,\text{Gyr} around R200R_{200} to 10Myr\mathord{\lesssim}10\,\text{Myr} near the center. Gas-depletion happens 3Gyr\mathord{\sim}3\,\text{Gyr} since crossing 2R2002R_{200} for HI-rich galaxies, but much quicker for HI-poor ones. Our results quantify in a physically motivated way the details and processes of environmental-effects-driven galaxy evolution, and might assist in analyzing hydrodynamic simulations in an observational way.Comment: 44 pages, 22 figures, 5 tables, accepted for publication in ApJ. Tables 4 and 5 are also available in machine-readable for
    corecore